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Analysis of a Longitudinal Gyroelectric
Discontinuity Inside a

Fiber Waveguide

p. G. COTTIS AND NIKOLAOS K. UZUNOGLU, MEMBER, IEEE

Afi,vtract —The scattering of guided electromagnetic waves from a

finite-length longitudinal gyroelectic discontinuity inside a fiber wavegnide

is treated analytically. An integral equation approach is employed to

formulate the corresponding boundary-vafue problem. The induced field

inside the gyroelectic discontinuity region is expanded into a Fourier-type

series in terms of the well-knowm cylindrical waves M and N PIUS a purely

longitudinal wave Q. Tberr the method of moments is applied to decouple

the basic integral equation. The resulting infinite coupled system of equa-

tion$ is truncated and solved numerically. After determining the field inside

the discontinuity, the scattered far field insirk the dielectric-rod wavegrride

is computed by employing a steepest descent integration technique.

Numerical results for the scattering coefficients of an incident HE ~~

dominant mode are obtained. Finally, design principles are discussed for

practical components based on the treated fongitndinal gyroelectric discon-

tirmity.

1. INTRODUCTION

T HE DEVELOPMENT OF low-loss optical fiber wave-

guides and the increasing use of dielectric waveguides

in millimetric wavelengths has created the necessity for

developing new circuit components associated with these

new transmission lines. In the development of active or

nonreciprocal components such as modulators, switches,

isolators, etc., several physical phenomena are exploited.

One of these phenomena is the magnetooptic effect (in

particular, the Faraday rotation of the polarization plane).

In recent years, there have been several analytical treat-

ments for the use of anisotropies in integrated optics

thin-film waveguides [1]–[3]. A bulk-type optical isolator

using the Faraday rotation has been reported [4] for the

A = 1.15-pm radiation wavelength. Considering the cylin-

drical dielectric-rod waveguide geometry, it seems that a

natural way to pass the guided wave through a Faraday

rotation medium is to introduce a finite-length longitudinal

gyrotropy along the waveguide axis. If such a nonrecipro-

cal circuit element could be realized, then all the benefits

[2] of the waveguide-type modulators could be exploited to

design active optical devices. The geometry of the longitu-

dinal gyroelectric discontinuity is shown in Fig. 1, where

the fiber waveguide radius and dielectric permittivity are

shown by b and E,C~, respectively. The gyroelectric discon-

tinuity, occupying the region – a < z < a of the infinite
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Fig. 1. Gyroelectnc discontinuity in a dielectric waveguide.

cylinder, is characterized by a tensor dielectric permittivity

and the whole space is assumed to be magnetically homo-

geneous, i.e., p = PO, where CO and PO are the free-space

permittivity and permeability constants, respectively. The

free-space wavenumber for the p > b (see Fig. 1) outer

region is shown by k. = a&, where w is the angular

frequency of the electromagnetic field. According to (l),

the anisotropy axis is assumed to be along the z-axis. This

occurs when the externally applied static field, biasing the

gyroelectric medium, is parallel to the waveguide axis.

Assume an incident guided wave Eo(r) either from the

left or the right (Fig. 1) to the gyroelectric discontinuity

region. Then the scattering will take place at the discon-

tinuity region creating forward and backward guided waves

and partial radiation of the incident energy. In order to

describe this process, an integral equation approach in

conjunction with the Green’s function method is employed

in this paper. The dyadic Green’s theorem, when applied to

formulate the corresponding boundary-value problem, re-

sults in a volume integral equation for the unknown elec-

tric field inside the gyroelectric discontinuity. The kernel of

this integral equation is the Green’s dyadic for a dielectric

rod expressed in terms of cylindrical vector wave functions.

The unknown interior field for the gyroelectric medium is

expressed as a superposition of the cylindrical waves &l

and N and a longitudinal wave Q. This expansion satisfies

the Maxwell equations for the gyroelectric medium. Sub-
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stituting this expansion into the basic integral equation, with
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Jm(x) (j= 1, Bessel function)

c:)(x)= Yin(x) (j= 2, Neumann function)

Jm(x)+iym(x)=Hm(x) (j= 3, Hankel function)

performing the necessary integrations and applying a

method of moments procedure, an infinite set of equations

is obtained for the unknown expansion coefficients of the

interior field. Truncation and the numerical solution of this

set of equations determines approximately the field in-

duced inside the gyroelectric region. Application of the

steepest descent integration technique for z -+ ~ m along

the fiber axis yields asymptotic expressions for the scatter-

ing coefficients.

It should be noted that the solution developed in this

paper is directly applicable to isotropic longitudinal dis-

continuities by assuming in (1) c1 + C3 and c~ + O. This is

a commonly encountered problem in many practical fiber

guide junction or splicing points.

In the following, a harmonic exp ( – iut) time depen-

dence is assumed for the electromagnetic field quantities

and is suppressed throughout the analysis.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

In this paper, a Green’s function formulation is used as

in [5], where the scattering from a spherical inhomogeneity

inside a dielectric waveguide is treated analytically. In the

following analysis, the dielectric waveguide is assumed to

be a single mode carrying only the HE ~ II dominant mode.

Then the guided incident wave E&(r) inside the guide

could be written as a linear combination of transverse

electric (TE) kf and magnetic (TM) N waves in the form

[5]

with m = + 1 or – 1, p < b (see Fig. 1), u is the propa-

gation constant of the HEII mode, and 81(U) is a known

factor as defined below. The conventional cylindrical wave

functions appearing in (2) are defined as

al = (k? – k2)1/2, kl= kofi, r=p~ + z;, (p, q, z) being

the cylindrical coordinates ,and m = O, +1, +2, t 3, . . . . In

the following analysis, the ikf and N vector wave functions

are employed extensively to express electromagnetic fields.

The weighting factor in front of the N~,” wave in (2), as

given in [5], is written as

klb aoJ((alb)H1(aob) – alJ1(alb)H:(aob)
81(u)=—

u k;(6, –l)J1(alb)Hl((xob)

(5)

with aO = (k; – k2)1/2.

As the incident wave E&(r) impinges on the gyroelect ric

discontinuity of Fig. 1, secondary fields are induced inside

and outside the gyroelectric medium. The superposition of

the incident and the secondary electric fields gives the total

field E(r). Applying the dyadic Green’s theorem in a

similar manner as in [5, sec. II], an integral expression is

obtained for the unknown electric field E(r) as

E(r) =Eo(r)+k~/~~ ~(r, r’). [(i–c,i).E(r’)] dr’
V.

(6)

where G( r, r’) is the dyadic Green’s function for the

infinite dielectric waveguide in the absence of the gyroe-

lectric discontinuity and I is the unit dyadic. The integra-

tion is carried out over the gyroelectric region VO (Fig. 1).

If the observation point r in (6) is restricted inside the

volume V(O,then an integral equation is obtained for the

unknown electric field E(r).

The dyadic Green’s function ~(r, r’) is determined by

solving the boundary-value problem for the excitation of

the dielectric waveguide by an elementary excitation cur-

rent id (r – r’), as explained in detail in [5]. The expression

given here for the dyadic ~(r, r’) is in a format suitable

for the presently treated cylindgcal discontinuity geometry.

The dyadic Green’s function G(r, r’) is decomposed into

two terms as

(3)

~(r, r’) =~o(r, r’)+ t51(r, r’) (7)

where GO( r, r’) corresponds to the free-space Green’s dy-

adic (for an infinite medium with a dielectric p~rmittivity

c = c~t. and magnetic permeability p = p ~) and Gl(r, r’) is

to take into account the reaction of the dielectric wave-

guide. The free-space Green’s dyadic including the singu-
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larity term at p = p’ is written as [6]

—

Mj3)~(r, kl)ikl!i, -k (r’, k,)

(’k) (p>p’)+Nj~L(r, kl)N!l~,-~ r , 1

&fJ)k(r, kl)lf!~,-~ (r’, kl)

+N#~(r, k1)N!3~, -~(r’, kl) (P< P’)

The dyadic ~l(r, r’) term can be written as

(8)

(9)

where the terms a(m, k), b(m, k), and c(m, k) are given

in [5, eqs. (19)–(23)].

III. EXPANSION OF THE ELECTRIC FIELD INSIDE THE

GYROELECTRIC MEDIUM

In order to solve (6), the unknown electric field (E(r))

inside the gyroelectric discontinuity should be expanded

into a complete set of proper eigenwaves. These eigenwaves

are determined by solving the vector wave equation

V XV XE(r)–k&.E(r) =0 (lo)

for an infinite medium. Considering the solution of (10) in

the Fourier domain, the electric field inside the discontinu-

ity region can be written as

E(r) =~~+~dgt Y exp(i&n”r)en(&) (11)
—cc ~=. m

where 6H = & + ~kn, k. = (nn/a), ~,= 2fX + .j$y and

e,, ( gt ) is an unknown function to be determined. Substitut-
ing (11) into (10), assuming a nontrivial solution for the

e,, (E,) vector function and defining & = [~,] = (f:+ &~)l/z,

a characteristic equation is obtained in the form

Cl&4 +( P(Cl+t3) +Q62)&2+(P2– Q2)c3=0 (12)

where P = k2 – k$l, Q = k$2.

The solution of (12) leads to the well-known ordinary

and extraordinary waves. The corresponding roots (2 =

&?, .$;, are the only allowed values for the & variable in the
expansion (11). Furthermore, (12), being biquadratic in &

has symmetric roots shown in the following as + (,, i =1,2.

Notice that these roots are independent of the ~f =

tan - 1(&Y/$X) azimuthal angle. Then the Fourier integral in

(11) is rewritten as

2

E(r) = ~ J“2ndpt ‘~j ezk’z. e’cpcOs(q-Q~)f, en, (qt)
,=1 o ~=.~

(13)

where p = (.x2 + y2)112, rp = tan-l(y/x) (see Fig. 1) are

the polar coordinates. Observe that only the ~ = cl and

& =$2 roots are taken into account, since the symmetric
roots are automatically included, when the integration over

the cp~ variable is performed. If one substitutes (13) into

(10), a homogeneous 3 X 3 linear system of equations is

obtained. Then it is possible to express the etnl = e~i. -2 and

eynz = en,. } components in terms of the ez~, = e~,. 2?.Fur-

thermore, expanding the exp (ig,p cos ( CP– qc)) and eZ., (qf)

terms in (13) into Fourier series for the Tf variable and

properly grouping the terms involved, (13) can be rewritten

in terms of the vector eigenwaves as

l?(r) = ~ )?j ‘~~ cm, n,l+m, n,l(r) (14)
~= —ml=lm=_w

where

*WT,n,,(r) =i~{AM(n, ~,) Mj’~k,,(r, K,)

+ AN(n, g,)ivj~i.n(rj ~1)

+ ‘Q(n7&)~!#k,,(r> K )] (15)

and where CM ~ ,, , are unknown coefficients to be de-

termined and

(15b)

(15C)

(15d)

2)(c$f+ k~-k&l)+k$c~ (~.5e)~(f,, k.) = (k$l-k~

K,= ($: + k:)l’2.

Finally

~~!k.(r, K,)= ~Jm($tp)e’(m~+~,z)
(16)

is an additional longitudinal wave due to the anisotropy.

IV. SOLUTION OF THE INTEGRAL EQUATION

In order to determine the electric field inside the gyroe-

lectric discontinuity region, substitute the field represen-

tation of (14) into the fundamental integral equation (6). In

the first place, it is necessary to compute the ({ – c,j) .E(r’)

term under the integral sign. To do this, (14) is employed

for the representation of the electric field. Then the prod-

uct (i– Cri). +m:n,l (r’) is computed. After a series of alge-

braic manipulations, the (i – c,i) .E(r’) term is expressed
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as a superposition of the lf, N, and Q cylindrical wave

functions, This intermediate result has been proved to be

critical in the following integral equation solution proce-

dure.

Then the following integrals are encountered for the

integration inside the gyroelectric discontinuity y volume

IjlM) ( r) i%f#~kn(r’, K, )

Q#~n(r’,K,)
where p = 0,1 and i =1,2. Since GO and ~1, as given from

(8) and (9), respectively, are expressed in terms of the

cylindrical wave functions, the orthogonality relations be-

tween the M, N, and Q functions are employed when

computing the integrals lP,. Furthermore, multiply both

sides of the integral (6) with the vector wave function

~_ ~,,_.,,,(r) and integrate over the discontinuity region.
Again making use of the orthogonality relations of the

vector wave functions and after a long series of algebraic

manipulations (see the Appendix), an infinite system of

equations is obtained in the form

+ f ~ c~, a, ZK~(n, i/n’, j) (17)
n=—~l=l

where R ~ and Q~ are readily computed and are given in

the Appendix and

K~(n, i/n’, j) = (~ dkFM(n, i/n’, j/k) (18)
—m

where F~ ( n, i/n’, j/k) is defined in the Appendix.

It is observed that (17) is decoupled with respect to the

m integers due to the orthogonality of the exp ( izncp) func-

tions on the gyroelectric cross-section area. A prerequisite

to solving (17) is to compute the KM( n, i/n’, j) terms with

sufficient accuracy. To this end, it is necessary to employ

numerical techniques for the computation of the integral in

(18).

V. COMPUTATION OF THE

Kn(n, i/n’, j) INTEGRALS

Before proceeding with the details of the numerical

integration of the K~( n, i/n’, j) integrals, it is useful to

expose some symmetry relations that the system coupling

coefficients possess. It can be verified directly that the

KM(n, i/n’, j) term is not symmetric in the strict sense,

i.e., Km(n, i/n’, j) # KM(n’, j/n, i). This in fact is due to

the anisotropy of the discontinuity region. However, it is

interesting to notice that interchanging the pairs of param-

eters (n, n‘) and (.$,, ~J) and also replacing the weighting

factors {BM(n, $,), BN(n, f,), ll~(n, f,)} with

{ – AJn’, &J), A~(n’, &j), ~~(n’, Ej)}, the same coupling

K-(n, i/n’, j) kernel function is obtained since ~(r, r’)==

G(r’, r) (see (7)), i.e., the Green’s dyadic is symmetric. This

symmetry can be proved easily for the part of the kernells

corresponding to the ~1 part of the Green’s function (see

(9)). A rather longer algebra is required to prove the

symmetry for the part of the matrix elements that originates

from the free-space dyadic GO.

Furthermore, this relation could be used as an indepen-

dent check for the numerical algorithms and could also be

employed to speed up the numerical computations. To this

end, even–odd symmetry relations are also employed fo,r

the integrand function, so that the integration range is

reduced from –co<k<+m to’ O<k<+m. Since a

truncation is required for the upper bound of the integral,

it is necessary to examine the asymptotic behavior of the

integrand function as k + + co. Introducing the asymp-

totic expressions for the functions involved, it is shown

that the integrand function behaves as k-2 as k - + co.

Therefore, the integral is convergent. The single valuedness

of the integrand function is insured by following the branch

cuts defined in [5]. The surface-wave pole k = u of the

HEII mode is -determined by using the successive bisec-

tions method up to a six-digit accuracy. The integrand

function has a singularity at the k = u point, and an

infinitesimal semicircle is used to encircle the surface-wave

pole. The final result amounts to the principal value of the

integral by excluding the short interval u – c < k < u + c

(~ ~ 0+ ) around the pole, plus the half residue contrib-

ution from the pole at k = u.

A careful examination of the integrand as k ~ k. shows

that the integrand function is regular at that point, while

as k-+kl (al~O) it behaves as Eo+E1a~ +”””. A

Simpson rule numerical integration procedure is adopted

for the numerical computation of the integrals. High accu-

racy is insured by dividing the integration domain into

subintervals and performing independent convergence tests

for each subinterval.

It is evident from the above considerations that the

numerical evaluation of the coupling coefficients is not so

easy. Use of the symmetry properties of the matrix ele-

ments has been made and effective numerical techniques

have been employed to reduce the numerical cost of the

computations.

VI. SCATTERING COEFFICIENTS

Assuming that the electric field inside the gyroelectric

discontinuity has been evaluated by inverting the linear

system (17), it is possible to determine the field anywhere

by appropriately applying the fundamental integral (6).

The guided-wave complex amplitudes in the forward (z -~

+ co) and backward (z - – co) directions, known as the

transmission and reflection coefficients, respectively, are

the most interesting quantities for this scattering process.

To this end, substitute the expansion of (14) into (6) and

assume that the observation point r is inside the dielectric

waveguide ( p < b), but outside the discontinuity region.
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Then the following expression is obtained:

E(r) =EO(r)+ JJJvOdr’{~o(r/r’)+ G,(r/r’)}

~ i Y’ Cm,n,,”im , “ ,(~M(~,L)MYk(r’,~)

Consider first the part of the integral that corresponds to

the free-space part ~o(r, r‘) of the Green’s function. It can

easily be shown that, as [z\ - + co, GO behaves as

exp ( ikl \rl)/ Irl. Since, in the present work, the interest is

focused on guided waves only, the corresponding contribu-

tion, diminishing as l/z, is neglected. Performing the

integration corresponding to the ~1( r/r’) term, (19) yields

E(r) =Eo(r)+y ~~m i imc~,n,l
n——m, =l

“J
1 sin(ak – nn)

‘“dk>
—cc al ak—nv

where

(20)

(21)

(22)

where F~J’( x, y )( j’ =1,2,3) are defined in the Appendix.

One can easily observe the existence of a common factor

exp ( ikz ) in the integrand function of (20). It is because of

this rapidly oscillating factor (as Iz I + + m), that the in-

tegral in (20) can be computed asymptotically applying the

well-known steepest descent method of integration. After a

routine procedure and by neglecting the contributions ex-

hibiting an exp ( ikz)/z behavior, the end result for the

guided-wave complex amplitudes originates mainly from

the residue contributions of the possible surface-wave poles

u. Assuming a single mode (HE+ II ) carrying dielectric

waveguide, the final result is writtefi as

E(r) =E$l(r){l+rf (u)} (23)
2+ +(X

sin(au–nr)
Res {a(m, k)}

av—n~ k~u

11
(24)

and the ( + ) or(–) sign corresponds to the HEII (m = +1)

or HE_ 11(m = – 1) incident wave Eoj(r). The result for

the reflected guide wave is obtained in a similar way and is

given as

E(r) =Eo*l(r)+pt (u)
z+—m

where p+(v) = –T+(U).

VII. NUMERICAL RESULTS

Numerical computations were performed by applying

the analytical results of the previous sections. Both iso-

tropic (e ~-+ c~ and c~ a O) and gyroelectric discontinuities

in single-mode fibers guiding the dominant HEII mode

have been considered.

Several checks were performed to insure the correctness

of the developed computer program. These were:

a) convergence and numerical stability tests;

b) validity of the energy conservation theorem;

c) comparison with experimental results concerning an

air-gap discontinuity.

To check the numerical stability of the results, numerous

computations were made by increasing the order of the

integer n in the solution of the infinite system (17). In

Table I, a sample convergence pattern for the forward

scattering coefficient ~ is given. The required order of

solution to insure good convergence depends upon the

electric length 2 koa of the discontinuity. In the resonance

region (that is, 2< koa < 4), a fourth-order solution was

found sufficient to provide accuracy.

In all the examined cases, the expected nonviolation of

the energy conservation theorem was checked. If the power

of the incident wave EO* l(r) is denoted by Wot, then the

power WLh consumed for radiation in the single-mode
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TABLE I
CONVERGENCE PATTERN FOR THE T FORWARD SCATTERING

COEFFICIENT FOR AN ISOTROPIC SCATTERERSWITH (,= 2.1,

cl ‘C3 = 3.6, <2 =0, kob= 2.o.

N

koa 2 3 4

2.0 ‘,239 + i.526 ‘.240 +i.527 -. 240+i .527

3.0 -.408-1.141 -.405 -i.137 –.406-i.137

5.0 ‘.854 + i.801 ‘.118 +i.115 -.118+ i .113

Tef Ian rods @8.5mm
Horn

WR42

a

~~ ~ Q
::

S[gnal Horn +2a+

source a

Fig. 2. Experimental setup for the measurement of the insertion loss
due to an air-gap discontinuity in a fiber waveguide.

0.2

L
2.s 5 7.5 a(mm)

Fig. 3. Comparison between theoretical and experimental results for an
air-gap discontinuity in a fiber with (r = 2.1, b = 4.25 mm at ~ = 20.5
GHz.

guide is computed from

In all the cases examined, the radiation loss W’~*/WO~

obtained values between O and 1, as it is imposed by the

energy conservation principle.

In order to have an independent check, results obtained

by using the present analysis were compared with mea-

sured experimental results for an air-gap discontinuity in a

dielectric-rod waveguide. The experimental setup shown in

Fig. 2 was used to measure the insertion loss of an air-gap

discontinuity in a teflon-rod waveguide at 20.5 GHz. In

Fig. 3, a comparison between theoretical and experimental

results is presented and a reasonably good agreement is

observed.’

A. Isotropic Discontinuities

The effect of introducing a longitudinal isotropic (cl= c~

= E;, ez = O) discontinuity in a single-mode carrying fiber

guide was examined. Because of the reciprocal nature of

401

/fJ1+Tl?, A....
l.o– b IP14XI00

0.6 – /
/’

/1
I

/’ \
0.2 – /’ \ –02

/’ \
%=2.1

\
./’ ‘\----

1 1 I , 1 I r 1 1 >

1.6 2.0 24 2.8 3.2 3,6 4.0 4.4 4,8 %

Fig. 4. Variation of the forward II+ .12 and backward IP12

coefficients with c;, when koa = kob = 2.0, <r = 2.1.

11+,12

1.0 h
“i \
0.2

1

power

I
I I I
123

k .a

Fig. 5. Variation of the forward II+ 712 power coefficient with koa,
when kob = 2.0, c, = 2.1, and c; = 3.6.

the isotropic scatterer, the scattering coefficients ~+(u)

and p + (u) should be equal to ~_(U) and p_ ( u), respec-

tively (see (24) and (25)). Indeed, this fact was verified by

the numerical results. In Fig. 4, the variation of the for-

ward 11+ ~ 12 and backward Ip 12 power coefficients with

respect to the relative dielectric constant of the discontinu-

ityy region c; are shown. In this case, the fiber waveguide

characteristics were c.= 2.1 and kOa = kOb = 2.0 and, as it

can be observed from the figure, in case ~J = c,, the effect

of the discontinuity is negligible and only when cg/c, > 1.6

does the scattering become significant.

A similar picture is observed in Fig. 5, when the discon-

tin~ity electric length kOa is varied for constant C;= 3.6,

c. = 2.1, and kOb = 2.0 values.

B. Gyroelectric Discontinuities

In treating the scattering of a propagating HEII wave

from a gyroelectric discontinuity, the z-component (E,) of

the incident wave is assumed to have a cos q azimuthal

dependence. Then, according to the superposition princi-

ple, the scattered E, component in the forward direction

will have a rp-dependence of the form

1+7+ 1+,.
~iv + — e–w

2 2

(
‘r+ + ‘i_

= 1+ ) r+ —T–

2
cosp+i

2
sinq. (26)

Therefore, gyroelectric discontinuities modify the polariza-
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tion of the incident wave, and, in general, elliptically

polarized waves are obtained. In order to characterize the

polarization of the forward scattered wav?s, a complex

ellipticity ratio is defined as

~+ — r–

‘=2+7 ++ 7.”
(27)

In addition, the forward scattered wave power coefficient is

determined as

~=11+~+1’ [l+ T_l’

2+2”
(28)

TABLE II
POLARIZATION ELLIPTICITY RATIO (g) AND FORWARD SCAnERED
WAVE POWERCOEFFICIENT(T) VALUESFORc,= 21, koa = 4.0,
k. b = ‘2.0, Cy= 2.1, c1= 0.675, AND VARIOUS e: OFF-DIAGONAL

TENSOR ELEMENTS

82 9 T

0.123 34.71@ 0.170

0.245 l.lol~ 0.245

0.369 o.791~ 0.413

0.492 0.611@ 0.558

0.615 0.491-71.7° 0.663——

TABLE III
VARIATION OF7~, g, T, WITH /c. FORTwo ANISOTROPIC

SCATTERERSWITH c,= 2.1, c1= 0.675, CZ= 0.247, kob = 2.0

&~.2.l

z+
koa T,. 9 T

1.0 (-.723 -i81.58 )10-4 5.8 X 10-3 89.6° .999

( .313+ i34.29 )10-4

2.0 -128 -i.133 6.7 X 10-2 88.4° .996

(-140+i .109 ) 10-3

3.0 -.191 -i.442 .156 - 70.6° .772

-.185 -i.171

E. = 1.0

1+

koa
T_ 9 T

2.0 -.145 -i.138 6.72 X 10-3 49.20 .98

(-.571 -i.380)IO-2

3.0 -.201-i .445 .148 -67,1° .75

-.206 -i.191

4.0 -.594 -i.335 .504 -84° .25

-.528+i .116

Several types of dielectric constant tensors have been con-

sidered. In Table II, results are given for a gyroelectric

discontinuity with c1 = 0.675, 63= 2.1, koa = 4.0, kob =

2.0, t.= 2.1, and for various c~ values. The variation of the

g ratio is interesting, especially when c‘ = 0.123. In this

case, the scattered wave is almost orthogonally polarized to

the incident wave. However, the forward scattered wave

power is quite small.

The variation of g and T with respect to the gyroelectric

discontinuity length has also been examined. In Table III,

results are given for two types of i-tensor permittivity

values, where in the resonance region (i.e., koa > 3), strong

depolarization can be observed. Although only ideal

gyroelectric media are considered here, the present analysis

can be applied to study millimeter-wave structures with

solid-state plasmas in semiconductor crystals under an

axial magnetic field of the type described in [7].

VIII. CONCLUSIONS

The diffraction of guided waves from a finite-length

discontinuity inside a fiber waveguide has been analyzed

using an integral equation method. A gyrotropic tensor

dielectric permittivity is considered. Therefore, the analysis

also covers the case of isotropic discontinuities in fiber

waveguides. The theory has been compared with experi-

mental results concerning an air-gap discontinuity and a

good agreement has been verified and several interesting

phenomena have been observed.

APPENDIX

Making use of the orthogonality relations of the M, N,

and Q cylindrical wave functions when performing the

integration over the discontinuity region, the end result for

the Z~tx) (r) ( X = M, N, Q) integrals after a proper re-

arrangement can be set in the form

p= O,l, i=l,2

where R$x)(k, $1) ( X = M, N, Q) can be arranged as a

combination of the cylindrical wave functions AZ, N, and

Q, and %(z) is given by

J‘*dk
sin(4~ – h)) ,~=

q.(z) = me’k”z –
—m k–k. e “

One can observe that, for – a < z < a, rpm(z) = O. This
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observation is critical, since the method of moments can be

straightforward applied to the remaining part of l~~y) (r) to

obtain the infinite system (17).

The R ~ and Q. are given from

Ryn(kn,,<,, (j )={ ‘&(n’, $,) A*(n’>.$~)

+AN(n’, &) AN(n’,&

)
W)(.&9 ‘$J)

lJ

(

+nk;r AM(n’, &)/lN(n’@;

J

)

1 ~J2)(41 , ‘5,–AM(n’> tJ)/4N(%gl)~ )

{

& ‘

+ AN(n’, &); +/@,.&)

1 1

“{
‘f ))ww,)‘N(n’, $)#+AQ(n’, ~

sin(au – n%)
Qm(u, kn, &,) ‘~m ~v_n/m

[(

–AM(n’, $,)

+8.(U)*

)

Yl~(~’, f~) ~j1)(8, &j)

J1

(
+nl –8m(u)&(n’,tJ)

1

}

+ :AN(n’,4J) FJ2)(u, gJ)

J

(

~2 <2

+am(u)z #N(n’, fJ)

lJ

). 1+AQ(n’,tJ)Fp(%$J)
where o = (k: – U2)l/2 and F~J’)(x, y) (p =1,2,3) are

The integral in (18) is given as

Km(n,i/n’, j)

-/

ia sin(ak–nm) sin(ak–n+r)
— ‘walk —

–W 21x; ak—nw ak — n’w

[~m(n,t,){-~~(~’,tj)+~~(k)
+AN(n’,tJ)+~~(f2)

+z4Q(n’, fJ)@MQ(k)}

.BN(n,ti){–~M(n’,tj)@NM(k)

+~~(n’>&J)%ri(k)

+AQ(n’, tj)4NQ@)}

“~Q(l’l,&){- Yi~(7Z’,.$’J)+QM(/k)

++v(~’d,)@Q,v(@

+~Q(rZ’, $J)@QQ(k)}

+a(m, k){ BM(n, $Z)F~l)(al, fZ)

+mkfiBN(n, fz)FJ2)(a1, $Z)}

(- AM(n’)fJ)Fi’)(a~, fJ)

+mk~AN(n’, fj)F~2)(a1, &j))

+~b(m, k)(BM(n, $z)mkF~2)(a1, $1)
1

+~Q(n, ti)]~J3)(al, ti))

(-~~(~’,fJ)FJ1)(al,tj)

+rnk.,AN(n’, &J) F~2)(a1, &’J)}

+~b(nz, k){ BM(n, &l) F~l)(al, ti)
1

(- AM(n’,4y)mkF(2) (al,CJ)m

G~l)(x, y)

{

H~(xb) H;(xb)\
xyb

——
X2- yz

xJ;(yb) – yJ~(yb)

q$)(x, y) J~(xb) J;(xb) j

Gi2)(X>.Y) =J ~yb)Hn(x@

I@(x, y)
m

J~(xb)

G$3)(x, y)

[

Hn(xb) H~(xb)
b

——
X2- y’

yJ;( yb) –xJ~(yb)

F~3)(x, y) J~(xb) J;(xb)
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@~Q(k)=@~Q(k>kn,kn,,$,>&,)

“’(%$,)‘;2;Gj’) ( al ,$, ) F~+—
1

4

@QQ(k) = ;G~3)(~I,f,)F~3)(al,&,)
1
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