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Analysis of a Longitudinal Gyroeleotric
Discontinuity Inside a

Fiber Waveguide

P. G. COTTIS anp NIKOLAOS K. UZUNOGLU, MEMBER, IEEE

Abstract —The scattering of guided electromagnetic waves from a
finite-length longitudinal gyroelectric discontinuity inside a fiber waveguide
is treated analytically. An integral equation approach is employed to
formulate the corresponding boundary-value problem. The induced field
inside the gyroelectric discontinuity region is expanded into a Fourier-type
series in terms of the well-known cylindrical waves M and N plus a purely
longitudinal wave Q. Then the method of moments is applied to decouple
the basic integral equation. The resulting infinite coupled system of equa-
tions is truncated and solved numerically. After determining the field inside
the discontinuity, the scattered far field inside the dielectric-rod waveguide
is computed by employing a steepest descent integration technique.
Numerical results for the scattering coefficients of an incident HE;
dominant mode are obtained. Finally, design principles are discussed for
practical components based on the treated longitudinal gyroelectric discon-
tinuity.

I. INTRODUCTION

HE DEVELOPMENT OF low-loss optical fiber wave-

guides and the increasing use of dielectric waveguides
in millimetric wavelengths has created the necessity for
developing new circuit components associated with these
new transmission lines. In the development of active or
nonreciprocal components such as modulators, switches,
isolators, etc., several physical phenomena are exploited.
One of these phenomena is the magnetooptic effect (in
particular, the Faraday rotation of the polarization plane).
In recent vears, there have been several analytical treat-
ments for the use of anisotropies in integrated optics
thin-film waveguides [11-[3]. A bulk-type optical isolator
using the Faraday rotation has been reported [4] for the
A =1.15-um radiation wavelength. Considering the cylin-
drical dielectric-rod waveguide geometry, it seems that a
natural way to pass the guided wave through a Faraday
rotation medium is to introduce a finite-length longitudinal
gyrotropy along the waveguide axis. If such a nonrecipro-
cal circuit element could be realized, then all the benefits
[2] of the waveguide-type modulators could be exploited to
design active optical devices. The geometry of the longitu-
dinal gyroclectric discontinuity is shown in Fig. 1, where
the fiber waveguide radius and dielectric permittivity are
shown by b and ¢,¢,, respectively. The gyroelectric discon-
tinuity, occupying the region — a <z <a of the infinite
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Fig. 1. Gyroelectric discontinuity in a dielectric waveguide.

cylinder, is characterized by a tensor dielectric permittivity

€ _ifz O
E=¢,| i, ¢ 0 (1)
0 0 €,

and the whole space is assumed to be magnetically homo-
geneous, i.e., u=p,, where €, and p, are the free-space
permittivity and permeability constants, respectively. The
free-space wavenumber for the p> b (see Fig. 1) outer
region is shown by k, = wyeypn,, where w is the angular
frequency of the electromagnetic field. According to (1),
the anisotropy axis is assumed to be along the z-axis. This
occurs when the externally applied static field, biasing the
gyroelectric medium, is parallel to the waveguide axis.
Assume an incident guided wave Ey(r) either from the
left or the right (Fig. 1) to the gyroelectric discontinuity
region. Then the scattering will take place at the discon-
tinuity region creating forward and backward guided waves
and partial radiation of the incident energy. In order to
describe this process, an integral equation approach in
conjunction with the Green’s function method is employed
in this paper. The dyadic Green’s theorem, when applied to
formulate the corresponding boundary-value problem, re-
sults in a volume integral equation for the unknown elec-
tric field inside the gyroelectric discontinuity. The kernel of
this integral equation is the Green’s dyadic for a dielectric
rod expressed in terms of cylindrical vector wave functions.
The unknown interior field for the gyroelectric medium is
expressed as a superposition of the cylindrical waves M
and N and a longitudinal wave Q. This expansion satisfies
the Maxwell equations for the gyroelectric medium. Sub-
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stituting this expansion into the basic integral equation,
Tn(x)
G (x) ={ Y, (x)

J(x)+iY, (x)=H,(x)

performing the necessary integrations and applying a
method of moments procedure, an infinite set of equations
is obtained for the unknown expansion coefficients of the
interior field. Truncation and the numerical solution of this
set of equations determines approximately the field in-
duced inside the gyroelectric region. Application of the
steepest descent integration technique for z — + oo along
the fiber axis yields asymptotic expressions for the scatter-
ing coefficients.

It should be noted that the solution developed in this
paper is directly applicable to isotropic longitudinal dis-
continuities by assuming in (1) €, = ¢, and ¢, — 0. This is
a commonly encountered problem in many practical fiber
guide junction or splicing points.

In the following, a harmonic exp(—iwt) time depen-
dence is assumed for the electromagnetic field quantities
and is suppressed throughout the analysis.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

In this paper, a Green’s function formulation is used as
in [5], where the scattering from a spherical inhomogeneity
inside a dielectric waveguide is treated analytically. In the
following analysis, the dielectric waveguide is assumed to
be a single mode carrying only the HE , ;; dominant mode.
Then the guided incident wave EJ'(r) inside the guide
could be written as a linear combination of transverse
electric (TE) M and magnetic (TM) N waves in the form
(5]

Ey(r) =MD (r ki) + m8y(0) N, (r, k) (2)
with m=+1 or —1, p<b (see Fig. 1), v is the propa-
gation constant of the HE,; mode, and §,(v) is a known
factor as defined below. The conventional cylindrical wave
functions appearing in (2) are defined as

im .
M (r, ky) = —p;C,ﬁ”(alp)p
AC (a o
_ m ( lp)(,i))elm(petkz (3)
dp

IC(arp)
———p

1 k
N (r, k1)=k*1(ik % —’p—Crf,’)(alpW

(4)

+ afC,f/)(alp)ﬁ) e'mPeikz
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with

(7 =1, Bessel function)
(j =2, Neumann function)
(j =3, Hankel function)

ay=(ki— k2, ky=kye,, r=pp+z5, (p, 9., z) being
the cylindrical coordinates and m=0,+1,+2 +3,.... In
the following analysis, the M and N vector wave functions
are employed extensively to express electromagnetic fields.
The weighting factor in front of the N, , wave in (2), as
given in [5], is written as

v

kb aojll(oﬁb)Hl(aob)" al-]l(oﬁb)Hf(aob)

8y(v) =—~ k2(e,—1)J,(ayb) H,(ayb)

(5)

with e, = (k3 — k)72,

As the incident wave EJ*(r) impinges on the gyroelectric
discontinuity of Fig. 1, secondary fields are induced inside
and outside the gyroelectric medium. The superposition of
the incident and the secondary electric fields gives the total
field E(r). Applying the dyadic Green’s theorem in a
similar manner as in [5, sec. 1I], an integral expression is
obtained for the unknown electric field E(r) as

E(r)=E0(r)+k3[//V(‘;‘(r, ) [(e=€1)-E(r)] dr
(6)

where G(r,r’) is the dyadic Green’s function for the
infinite dielectric waveguide in the absence of the gyroe-
lectric discontinuity and 1 is the unit dyadic. The integra-
tion is carried out over the gyroelectric region V; (Fig. 1).
If the observation point » in (6) is restricted inside the
volume ¥, then an integral equation is obtained for the
unknown electric field E(r). _

The dyadic Green’s function G(r, r’) is determined by
solving the boundary-value problem for the excitation of
the dielectric waveguide by an elementary excitation cur-
rent 16(r — r’), as explained in detail in [5]. The expression
given here for the dyadic G(r,r’) is in a format suitable
for the presently treated cylindrical discontinuity geometry.
The dyadic Green’s function G(r, ') is decomposed into
two terms as

G(r,r)=Gy(r,r)+G(r,r) (7)

where G,(r, r’) corresponds to the free-space Green’s dy-
adic (for an infinite medium with a dielectric permittivity
€ = €€, and magnetic permeability p = pu,) and G(r, r’) is
to take into account the reaction of the dielectric wave-
guide. The free-space Green’s dyadic including the singu-
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larity term at p = o’ is written as [6]

(="
G = T T
Mrf?,)k("’ k)M, (¢, k)
Nn?)k(r k)N® _k(r’ k) (p>p)
M (r, k)M, (r', k)
+N(1)k(,. k )N( _k(,. 1) (p<p’)
—k;%p8(r—r). (8)

The dyadic G,(r, ") term can be written as
+co

G,(r, r)——f+oodk )3 (_12)m

87 e oo I

-[a(m,k)M(l)k(r k )M(lm (' ky)
+b(m, k)MD, (r, k) )NY, _ (¢, k)
+b(m, k)NDB(r, ke )MD, _ (v, k)
+c(m, k)N, (r, kONS, (), kl)] (9)

where the terms a(m, k), b(m, k), and c¢(m, k) are given
in [5, egs. (19)—(23)].

III. ExpPANSION OF THE ELEcTRIC FIELD INSIDE THE
GYROELECTRIC MEDIUM

In order to solve (6), the unknown electric field (E(r))
inside the gyroelectric discontinuity should be expanded
into a complete set of proper eigenwaves. These eigenwaves
are determined by solving the vector wave equation

VXV XE(r)—k¥-E(r)=0

(10)

for an infinite medium. Considering the solution of (10) in
the Fourier domain, the electric field inside the discontinu-
ity region can be written as

exp(ién-r)

E(r)=[[ "4 xz e.(k)

where §,=§& + 2k, k,=(nn/a), £ =23(+ pé, and
e,,(E ) is an unknown functlon to be determined. Substltut-
ing (11) into (10), assuming a nontrivial solution for the

e, (§,) vector function and defining £ =[§,]= (£ +¢2)'/7,
a characteristic equation is obtained in the form

&'+ (Pleg+63)+06,) 82 +(P2—0%)e; =0 (12)

where P =k? — kle,, Q= kl,.

The solution of (12) leads to the well-known ordinary
and extraordinary waves. The corresponding roots £%=
&7, £2, are the only allowed values for the ¢ variable in the
expansion (11). Furthermore, (12), being biquadratic in §,
has symmetric roots shown in the following as + £, i =1,2.
Notice that these roots are independent of the Q=
tan‘l(é' ./&.) azimuthal angle. Then the Fourier integral in

(11)

(11) is rewritten as

+ oo

E(r)- % [Tdwe L etsetreonige, (p)
=1 n=—o0
(13)

where p=(x%+ y*)/2 p=tan"'(y/x) (see Fig. 1) are
the polar coordinates. Observe that only the §=¢, and
§=¢£, roots are taken into account, since the symmetric
roots are automatically included, when the integration over
the ¢, variable is performed. If one substitutes (13) into
(10), a homogeneous 3X 3 linear system of equations is
obtained. Then it is p0331b1e to express the e, = e,,-X and
e, =e, -y components in terms of the e,,, =e,,-2. Fur-
thermore, expanding the exp (i£,p cos(¢ — ¢;)) and €. (Ps)
terms in (13) into Fourier series for the ¢, variable and
properly grouping the terms involved, (13) can be rewritten

in terms of the vector eigenwaves as

E(r)= 1 b (7)) (14)
where o
Yo (1) =i Ay (0, €)M, (1, K,)
+AN(n,§,)N,,§{)k"(r,K,)
+Ay(n,6)0%, (r.K,)} (15)

and where ¢,
termined and

.., are unknown coefficients to be de-

%,k
Ap(n, &) = D(sz) (15b)
24k - k2
R T )061 (15¢c)
£+ k2 — ke, ) — k&
AQ(n,ﬁ,)=( e 0;)) o2 (15d)

D(gz’ kn) = (k(z)EI~
(£Z+k )1/2

k)& + k2~ Kie,) + kefed (15¢)

Finally
(1) (r K ) —ZJ (5 p)et(mqa+k,,z)

(16)
is an additional longitudinal wave due to the anisotropy.

IV. SorutioN oF THE INTEGRAL EQUATION

In order to determine the electric field inside the gyroe-
lectric discontinuity region, substitute the field represen-
tation of (14) into the fundamental integral equation (6). In
the first place, it is necessary to compute the (€ — ¢,1)- E(r")
term under the integral sign. To do this, (14) is employed
for the representation of the electric field. Then the prod-
uct (€ —¢,1)-4,, , ,(r') is computed. After a series of alge-
braic man1pulat10ns the (€ —¢,1)- E(r’) term is expressed
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as a superposition of the M, N, and @ cylindrical wave
functions. This intermediate result has been proved to be
critical in the following integral equation solution proce-
dure.

Then the following integrals are encountered for the
integration inside the gyroelectric discontinuity volume

1M (r) MP, (r',K,)

LN(r) = [[[ @G (r/r)- NG (7, K,)
Vs

L2 (r) 09, (r',K,)

where p=0,1 and i =1,2. Since G, and G, as given from
(8) and (9), respectively, are expressed in terms of the
cylindrical wave functions, the orthogonality relations be-
tween the M, N, and Q functions are employed when
computing the integrals I,. Furthermore, multiply both
sides of the integral (6) with the vector wave function
V_ v —w,,(r) and integrate over the discontinuity region.
Again making use of the orthogonality relations of the
vector wave functions and after a long series of algebraic
manipulations (see the Appendix), an infinite system of
equations is obtained in the form

2
Z Rm(kn" gl’ g/)cm,n,t = Qm(v’ kn” éj)

=1
+ o0 2
+ Z Zcm,n,th(n’i/n/’ J) (17)
n=—o001=1
where R, and Q,, are readily computed and are given in
the Appendix and

Kn(mi/n', )= [ dkEy(n.i/m.j/k)  (18)

where F,(n,i/n’, j/k) is defined in the Appendix.

It is observed that (17) is decoupled with respect to the
m integers due to the orthogonality of the exp(ime) func-
tions on the gyroelectric cross-section area. A prerequisite
to solving (17) is to compute the K, (n,i/n’, j) terms with
sufficient accuracy. To this end, it is necessary to employ
numerical techniques for the computation of the integral in
(18).

V. COMPUTATION OF THE
K, (n,i/n’, j) INTEGRALS

Before proceeding with the details of the numerical
integration of the K, (n,i/n’, j) integrals, it is useful to
expose some symmetry relations that the system coupling
coefficients possess. It can be verified directly that the
K, (n,i/n’, j) term is not symmetric in the strict sense,
ie., K, (n,i/n, Y+ K, (n',j/n,i). This in fact is due to
the anisotropy of the discontinuity region. However, it is
interesting to notice that interchanging the pairs of param-
eters (n,n’) and (§,,£,) and also replacing the weighting
factors { By (n,§,), By(n,§), By(n, §)} with
{— Ay, 51), Ayn(n’,§)), Ag(n’,§,)}, the same coupling
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K, (n,i/n’, j) kernel function is obtained since G(r, #’) =
G(r', r) (see (7)), ie, the Green’s dyadic is symmetric. This
symmetry can be proved easily for the part of the kernels
corresponding to the G part of the Green’s function (see
(9)). A rather longer algebra is required to prove the
symmetry for the part of the matrix elements that originates
from the free-space dyadic G,.

Furthermore, this relation could be used as an indepen-
dent check for the numerical algorithms and could also be
employed to speed up the numerical computations. To this
end, even—odd symmetry relations are also employed for
the integrand function, so that the integration range is
reduced from —oo<k<+4+o00 to 0<k<+o0. Since a
truncation is required for the upper bound of the integral,
it 1s necessary to examine the asymptotic behavior of the
integrand function as k& — + o0. Introducing the asymp-
totic expressions for the functions involved, it is shown
that the integrand function behaves as k=2 as k — + .
Therefore, the integral is convergent. The single valuedness
of the integrand function is insured by following the branch
cuts defined in [5]. The surface-wave pole k=v of the
HE,; mode is-determined by using the successive bisec-
tions method up to a six-digit accuracy. The integrand
function has a singularity at the k=wv point, and an
infinitesimal semicircle is used to encircle the surface-wave
pole. The final result amounts to the principal value of the
integral by excluding the short interval v —e<k <v+e
(e > 0*%) around the pole, plus the half residue contri-
bution from the pole at k = v.

A careful examination of the integrand as k — k, shows
that the integrand function is regular at that point, while
as k—k, (a;—0) it behaves as E,+ Ejai+ -+ . A
Simpson rule numerical integration procedure is adopted
for the numerical computation of the integrals. High accu-
racy is insured by dividing the integration domain into
subintervals and performing independent convergence tests
for each subinterval.

It is evident from the above considerations that the
numerical evaluation of the coupling coefficients is not so
easy. Use of the symmetry properties of the matrix ele-
ments has been made and effective numerical techniques
have been employed to reduce the numerical cost of the
computations.

VI

Assuming that the electric field inside the gyroelectric
discontinuity has been evaluated by inverting the linear
system (17), it is possible to determine the field anywhere
by appropriately applying the fundamental integral (6).
The guided-wave complex amplitudes in the forward (z -»
+ o) and backward (z = — o0) directions, known as the
transmission and reflection coefficients, respectively, are
the most-interesting quantities for this scattering process.
To this end, substitute the expansion of (14) into (6) and
assume that the observation point r is inside the dielectric
waveguide (p < b), but outside the discontinuity region.

SCATTERING COEFFICIENTS
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Then the following expression is obtained:

E(r) =Eo(r)+ [ [ [ dr{Golr/r)+Gi(a/r)}

2 + 00
: Z Z cm,n,l'im{BM(n7gz)Mrg,)k"(r/7 K;)

i=ln=—-0o0

+ BN(”: gz)Nm(l,)k,,(r,? K;)

+ Bo(n,£)00, (v, K))}. (19)
Consider first the part of the integral that corresponds to
the free-space part C_O(r, r’) of the Green’s function. It can
easily be shown that, as |z|— +o0, G, bechaves as
exp (ikq|r))/|r|- Since, in the present work, the interest is
focused on guided waves only, the corresponding contribu-
tion, diminishing as 1/z, is neglected. Performing the
integration corresponding to the G,(r/#’) term, (19) yields

+ 00 2
E Z imCm,n,z

E(r) = Eo(r)+ 2

2 n=—-o01=1
+o 1 sin(ak —nw)
/ dk — ———
“x ai ak—nw

. {[a(m, k)U,(ay. &)+ b(m, k), (ar,&)]
MO (r k) + [b(m, kYU, (0, )
+e(m, k), (o, €) N (r, k) } (20)
where
U, (@, €)= By(n, gl)F»(:l)(al’ ¢)
mk
K

1

+BN(n’§t> nFn(zz)(alv‘Sz) (21)

mk s
va(“l’£z)=BM(n’gz)—k——Fn(l)(a1’£1)
1
kk,
kK
af & ,
+— BN(n7§l)_+BQ(n’€l) Fm()(al’éz)
kl K'

I

+BN(”’§I) F»il)(“l’gz)

(22)

where F{(x, y)(j=1,2,3) are defined in the Appendix.
One can easily observe the existence of a common factor
exp(ikz) in the integrand function of (20). It is because of
this rapidly oscillating factor (as |z| > + o), that the in-
tegral in (20) can be computed asymptotically applying the
well-known steepest descent method of integration. After a
routine procedure and by neglecting the contributions ex-
hibiting an exp(ikz)/z behavior, the end result for the
guided-wave complex amplitudes originates mainly from
the residue contributions of the possible surface-wave poles
v. Assuming a single mode (HE ,,;) carrying dielectric
waveguide, the final result is written as

E(r) =Ef'(r){(1+7,(v)}

z—>+ o

(23)
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where
_ + o0 2 1
T, (v) =+ ina Z Z Citni™7
n=—o001=1 o
sin(av — nw)
" Res {a(m, k)}

av —nmw k—v

k,
: {BM(n’ Et)Fl(l)((’? $I)+ ?BN(’/hgl)Fl(Z)(U’ gl)
s 81(0)[31\4(”: gi)kiFl(Z)(a’éz)
1
vk
ky

(0,

52
BN(n’gz)? + BQ(n’Sl)

+BN(”’£1)
2

+ —
ki

Fl(S)(“’sz)}}

o= (k2= 02)"

(24)
and the (+) or (—) sign corresponds to the HE,, (m = +1)
or HE_,;(m = —1) incident wave E['(r). The result for
the reflected guide wave is obtained in a similar way and is
given as

E(r) =Eg'(r)+p.(v)

(M (nk)F (NG _(r. k)] (25)

where p, (v) = —171 ().

VIL

Numerical computations were performed by applying
the analytical results of the previous sections. Both iso-
tropic (€; = €; and ¢, — 0) and gyroelectric discontinuities
in single-mode fibers guiding the dominant HE,; mode
have been considered.

Several checks were performed to insure the correctness
of the developed computer program. These were:

NUMERICAL RESULTS

a) convergence and numerical stability tests;

b) validity of the energy conservation theorem;

¢) comparison with experimental results concerning an
air-gap discontinuity.

To check the numerical stability of the results, numerous
computations were made by increasing the order of the
integer n in the solution of the infinite system (17). In
Table I, a sample convergence pattern for the forward
scattering coefficient 7 is given. The required order of
solution to insure good convergence depends upon the
electric length 2k of the discontinuity. In the resonance
region (that is, 2 < kga<4), a fourth-order solution was
found sufficient to provide accuracy.

In all the examined cases, the expected nonviolation of
the energy conservation theorem was checked. If the power
of the incident wave Ejt'(r) is denoted by W,*, then the
power W,* consumed for radiation in the single-mode
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TABLE1
CONVERGENCE PATTERN FOR THE 7 FORWARD SCATTERING
COEFFICIENT FOR AN ISOTROPIC SCATTERERS WITH €, = 2.1,
€ =€=3.6,¢,=0, keb=20.

N
2 3 4
koa

2.0 ~.239 +1.526  —.240+i.527  -.280+i.527

3.0 -.408 -1.141  -.405-1.137  -.406-i.137

5.0 —.854 +1,801  -,118+{.115 ~—,118+1,113

Teflon rods $85mm
) Horn
WR42 !

|L ] T E
w2t :

Signal
source

Horn

Fig. 2. Experimental setup for the measurement of the insertion loss
due to an air-gap discontinuity in a fiber waveguide.

It +I[2
1.0 1
— (o]
0.6
0.2
T | I [
25 5 75 aimm)

Fig. 3. Comparison between theoretical and experimental results for an
air-gap discontinuity in a fiber with ¢, =2.1, 5=4.25 mm at f=20.5
GHz.

guide is computed from
WiE =Wt (1-N+7, 1>~ p, %)

In all the cases examined, the radiation loss W,/ W,*
obtained values between 0 and 1, as it is imposed by the
energy conservation principle.

In order to have an independent check, results obtained
by using the present analysis were compared with mea-
sured experimental results for an air-gap discontinuity in a
dielectric-rod waveguide. The experimental setup shown in
Fig. 2 was used to measure the insertion loss of an air-gap
discontinuity in a teflon-rod waveguide at 20.5 GHz. In
Fig. 3, a comparison between theoretical and experimental
results is presented and a reasonably good agreement is
observed.’

A. Isotropic Discontinuities

The effect of introducing a longitudinal isotropic (¢; = €,
= ¢}, €, =0) discontinuity in a single-mode carrying fiber
guide was examined. Because of the reciprocal nature of
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N+1| . T )
1.0 - RN L 1917x100
0.6 4
0.2 -
g2t e AN
| =7 \

T T T = T T T T T 7
16 20 24 28 32 36 4.0 44 48 Er

Fig. 4. Variation of the forward [1+ 7|> and backward |p|> power
coefficients with €], when kga=kyb =20, ¢, =21.

2
11+t
1.0 —
06 -
0.2
T T T
12 3 ko

Fig. 5. Variation of the forward {L+ 7|*> power coefficient with koa,
when kob=2.0,¢,=21,and € =36.

the isotropic scatterer, the scattering coefficients 7, (v)
and p, (v) should be equal to 7_(v) and p_(v), respec-
tively (see (24) and (25)). Indeed, this fact was verified by
the numerical results. In Fig. 4, the variation of the for-
ward [+ 7|? and backward |p|> power coefficients with
respect to the relative dielectric constant of the discontinu-
ity region e/ are shown. In this case, the fiber waveguide
characteristics were €, = 2.1 and ko= kb =2.0 and, as it
can be observed from the figure, in case €/ = ¢,, the effect
of the discontinuity is negligible and only when ¢/ /¢, >1.6
does the scattering become significant.

A similar picture is observed in Fig. 5, when the discon-
tinuity electric length kg« is varied for constant e, = 3.6,
¢,=2.1, and kyb = 2.0 values.

B. Gyroelectric Discontinuities

In treating the scattering of a propagating HE,, wave
from a gyroelectric discontinuity, the z-component (E,) of
the incident wave is assumed to have a cos¢g azimuthal
dependence. Then, according to the superposition princi-
ple, the scattered E, component in the forward direction
will have a ¢-dependence of the form
1+ 7, o 14+ 7_

e’ +
2 2

e '?

I o T T_
= (1+ +T)cos<p +i—+—2—- sing. (26)

Therefore, gyroelectric discontinuities modify the polariza-
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tion of the incident wave, and, in general, elliptically
polarized waves are obtained. In order to characterize the
polarization of the forward scattered waves, a complex
ellipticity ratio is defined as
=T
= (27)
247, +7_

In addition, the forward scattered wave power coefficient is
determined as

g

M+7,2 Q+7_J?
2 2

(28)

TABLE II
POLARIZATION ELLIPTICITY RATIO (g) AND FORWARD SCATTERED
WAaVE POWER COEFFICIENT (T') VALUES FOR €, = 2 1, kya= 4.0,
kob =20, =21, ¢ = 0.675, AND VARIOUS ¢, OFF-DIAGONAL
TENSOR ELEMENTS

€2 g T
0.123 34.7/33.9° 0.170
0.245 1.10-70.5° 0.245
0.369 0.79]-74.9° 0.413
0.492 0.61]-74° 0.558
0.615 0.49]-71.7° 0.663

TABLE III

VARIATION OF 7, g, T, WITH k; FOR TWO ANISOTROPIC
SCATTERERS WITH €, = 2.1, ¢, = 0.675, ¢, = 0.247, kb =20

£ =
3= 2.0
Ty
k.a - 9 T
1.0 (-.723-181.58 ) 107 5.8 X 1073 89.6° .999
( .313+134.291107%
2.0 -128-1.133 6.7 X 1072 88.4° .996
(-1804+1.109 ) 1673
3.0 -.191-1.442 156 - 70.6° 772
-.185-1.171
£y = 1.0
T
R
T g T
koa
2.0 . 145-i.138 6.72X107%  49.2° .98
(-.571-1.380)1072
3.0 -.201-1.445 .148 -67,1° .75
-.206-1.191
4.0 -.594-1.335 .504 -84° .25
-.528+i.116
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Several types of dielectric constant tensors have been con-
sidered. In Table II, results are given for a gyroelectric
discontinuity with ¢, =0.675, €;=2.1, kpa=4.0, kb=
2.0, ¢, = 2.1, and for various €, values. The variation of the
g ratio is interesting, especially when e, = 0.123. In this
case, the scattered wave is almost orthogonally polarized to
the incident wave. However, the forward scattered wave
power is quite small.

The variation of g and T with respect to the gyroelectric
discontinuity length has also been examined. In Table III,
results are given for two types of €-tensor permittivity
values, where in the resonance region (i.c., kya > 3), strong
depolarization can be observed. Although only ideal
gyroelectric media are considered here, the present analysis
can be applied to study millimeter-wave structures with
solid-state plasmas in semiconductor crystals under an
axial magnetic field of the type described in [7].

VIII.

The diffraction of guided waves from a finite-length
discontinuity inside a fiber waveguide has been analyzed
using an integral equation method. A gyrotropic tensor
dielectric permittivity is considered. Therefore, the analysis
also covers the case of isotropic discontinuities in fiber
waveguides. The theory has been compared with experi-
mental results concerning an air-gap discontinuity and a
good agreement has been verified and several interesting
phenomena have been observed.

CONCLUSIONS

APPENDIX

Making use of the orthogonality relations of the M, N,
and @ cylindrical wave functions when performing the
integration over the discontinuity region, the end result for
the I{¥(r) (X=M,N,Q) integrals after a proper re-
arrangement can be set in the form

i sin(a(k—k,))

+ oo
(M) = — M
1(r) —f_w dk s ROD(k, ¢,)

2
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P im
+p5—J.(Ep)e %, (2)

ki e
+ 00 i Sin(a(k—kn))

1M (r) =f_oo g ror RU(KkE)
, P ik 3Jm(ép) ()
e A€
+wo 1 sin(alk—k,))

Q) = - n
B =] gy, )
=01, i=1.2

where R{O(k.£) (X=M,N,Q) can be arranged as a
combination of the cylindrical wave functions M, N, and
0, and ¢,(z) is given by

+oo  sin(a(k—k,
o,(z2) =7re’k"z—/¥ dk ———(?(jk——))e’k‘".

One can observe that, for —a<z<a, ¢,(z)=0. This
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observation is critical, since the method of moments can be
straightforward applied to the remaining part of I)(r) to
obtain the infinite system (17).

The R, and Q,, are given from

R, (k,.£.8)= {— Ay (', £) A, (0, €)

2

+AN(n,’ gt)AN(n g )KK

B0 )

1
+ mk',,,{AM(n’, £)Ay(n, 5)}

J

1
- AM(n/a SJ)AN(n’ g;)‘k_}FnP(sn ‘Sj)

2

:
a6+ gl

{An( ) 2+ 4008 EO (68

,Sin(av—n'm)

Qm(v’ kn" sj) =

{—AM(n’, £)

av—n'r

kv
+ 8m(U)E——A

71

m{—sm(v)kilAM(ncs,)

N(”/7 éj)}anl)(S’ 5/)

k,
()| e 8)

J

+8,(0 )kl{é Ay(.8)

+ AQ(n’, Ej)}F,,(f)(a, Ej)}

where o = (k2 — v?)1/? and F{P(x, y) (p=1,2,3) are

Go(x.») b
— 27 (b)
x*—y

FO(x, y)

GP(x,y) H,(xb)

(2 =J,(yb)
Fm)(x’y) Jm(Xb)
GO (x,y) b

== P (yb)
x?—y

FP(x, )
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The integral in (18) is given as
K, (n,i/n,j)
_f 2a1 ak — nm
B, €){ = Au (0, £) b ()
+ Ay (', §) barw (k)
£ Ao owolK))
'BN(n’gi){_AM(nl’Ej)q)NM(k)
4 Ay (1,€)) d (K)
+AQ(n/7$j)¢NQ(k)}
Bo(n, &){ =~ 4w (', §,) dou (k)
+ A (n'.£,) don (k)
+Ag(n',§,) dp0(k))
+a(m, k){By(n, &) EP(ay. £,)
+mk,By(n, £ )FP (0, £,)}
(= Ap(n &) EP (a0, 8))
+mk, Ay (n', &) F® (a1, §) }

1
+ - b(m k) Byy(n, ) mkED (o0, §,)
1

ia sin(ak —n7w) sin(ak —n'n)

ak —n'm

+ Kk, By (n, &) FO (o, &) + aF [£2By (n, &)
+ By(n, £)| O (e, £))

A= a0 &) EP ey, §))
2, )}

1
b (m, ) { By (n, £) EP (e, &)
1

+mk,, Ay(n', &) F}

+mk,By(n, &) FP (a1, £,)}

{ = Ay (&) mkED (e, £))

H,(xb) H,(xb)
= 3. (yb)

J,,(xb) T, (xb)
H,(xb) H,, (xb)
- xJ,(yb)

J,(xb) J!(xb)
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+ kkn'AN(n/’ E_])Fn{ll)(al’ gj)

+at[@ay(n.8)+ Ag(n, &) EP(a.8))

1
+ Pc(ma k){BM(n’éz)mkFrg)(al’éz)

1
+ kknBN(n’ E1)F;V(ll)(a1’ 61)+ alz[gtzBN(n’gz)
+ By(n. &) FO (. £,))
: { - AM(”” éj)mkF"SZ)(al’gj)
+ kkn’AN(n/’ gI)F‘rr(zl)(al’gj)
o[y (n.8) + Ag(n &) ED (o, 8)}]
BM(”? gz) = ké(el - Er)AM(n’éz)
+ k(%EZAN(n’ gl)/Kl
By(n.§) =ki(e—¢,)Ay(n.&,)
+ k§€2AM(n‘ sz)I(l/kn
BO("’ g1) = k(%(el - er)AQ(n9£t)+ k(2)(53 - El)

{Qws)+§ (nsﬁ

- k(%ethzAM(n’ gl)/kn
¢MM(k) = Gr(nl)(al’ £1)Fn§1)(a1, gj)

2k2

k2 G<2)(a1,g )Fm(apg )

2i a2 o
+_— $2Fm (él’gj)
¢MN(k) =¢MN(k7kn, kn'agpgj)
=mkn,G,;l)(al,§I)F"§2)(a1,§j)
k2 (2) 1)
—I-mkn,k2 (e, &) FS (a1,$ )

52
+mkad 5 G2 (ay, £) F (e, 8,)
1

21 a?

1£2mk FP (e, 8))

L (Xl
¢MQ(k) = ¢MQ(k7 kn’ kn’; g,, gj)

- mka Gr(nZ)(al’ é‘1)1‘7”(13)(“1’ Ej)

Suw (k) =m?k,k, GP (e, &) FP (ay, )

2

k
+"]'{_2k k Grg)(al’gi)Frr(tl)(al’gj)

522

+ kk,,
ki

G (e, &) EP (e &)

m)(a17£j)
G‘”( ap, &) (e, €))
k1
2i 1 of
T k2 a1

ED(6,8)+ 28 (e, + ) EO(£,8,))

g Uk [k = €2) + ke?]

¢MN(k) = ¢NM(k9 kn’7 knvgja g;)
brg(k) = ¢No(k, Ky k£, 8))

{1

= kk ——G‘l’(alyéi)F,é3’(a1,fj)

nk2 m
52
T O (o £ B (w.)

2i 1 of
Y et U e (L)

¢QM(k)=¢MQ( kn”kn’gjagt)
¢QN(k) =¢NQ(k k ’7kn7£jvg )

$0(k) = —G(”(al,é VED (a.€))

2i 1 of

H= 2—»:- F(E. ).
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